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Two weak-coupling continuous time quantum Monte Carlo �CTQMC� methods are shown to be equivalent
for Hubbard-type interactions. A relation between these CTQMC methods and the Hirsch-Fye quantum Monte
Carlo �HFQMC� method is established, identifying the latter as an approximation within CTQMC and provid-
ing a diagrammatic interpretation. Both HFQMC and CTQMC are shown to be equivalent when the number of
time slices in HFQMC becomes infinite, implying the same degree of fermion sign problem in this limit.
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I. INTRODUCTION

Hirsch-Fye quantum Monte Carlo �HFQMC� is a standard
method for the simulation of quantum lattice models �1–5�.
However, during the past decade, new quantum Monte Carlo
�QMC� methods have emerged, which are based on stochas-
tic sampling of diagrams in a perturbative expansion �6�.
These new methods avoid systematic errors due to finite dis-
cretization in the imaginary time and are commonly referred
to as “continuous time quantum Monte Carlo” �CTQMC�.
With new variants of CTQMC appearing, a comparison of
these formalisms becomes important. In this work, we con-
sider two seemingly different CTQMC methods proposed by
Rombouts et al. �7� and Rubtsov et al. �8� based on the
expansion of the interaction term of Hamiltonian in the per-
turbation series, also known as “weak-coupling” CTQMC.
We show that for Hubbard-type interactions these methods
are equivalent. We also show that HFQMC can be inter-
preted as a summation of a specific subset of diagrams
present in CTQMC.

II. EQUIVALENCE OF CTQMC ALGORITHMS BY
ROMBOUTS et al. AND RUBTSOV et al.

These methods consider the perturbative expansion of the
partition function in powers of the interaction and then
sample the resulting series of multidimensional integrals sto-
chastically. We will use a path integral formalism to illustrate
this. Here, the partition function is written as an integral over
the Grassman variables � ,��: Z=�D��D�e−S���,��, with the
action

S���,�� = S0���,�� − �
0

�

d�V������,����� , �1�

where S0 is the bare part of S and V is the interacting part of
the Hamiltonian H. For the purposes of discussion we con-
sider Hubbard-type repulsive interaction �9�,

V = U�
j=1

Nc �nj↑nj↓ −
1

2
�nj↑ + nj↓�	 . �2�

In the Rombouts method �7�, a constant K is introduced to
shift the reference free energy and the resulting series expan-
sion for the partition function can be written as

Z = e−K�
��,�

e−S0�
k=0

� 
K

�
�k�

0

�

d�1¯�
0

�k−1

�d�k�1 −
�

K
V��1�	¯ �1 −

�

K
V��k�	 . �3�

The following identity is then used to decouple the interac-
tion terms and introduce an auxiliary field s,


1 −
�

K
V� =

1

2Nc
�
j=1

Nc

�
sj=�1

e�sj�nj↑−nj↓�, �4�

where cosh �=1+
�UNc

2K . The resulting series for the partition
function is

Z = e−K�
��,�

e−S0�
kj�s


 K

2�Nc
�k

�e�s1�nj1↑��1�−nj1↓��1��
¯ e�sk�njk↑��k�−njk↓��k��, �5�

where multiple sums and integrals are denoted as

�
kj�s

= �
k=0

� �
0

�

d�1 �
j1=1

Nc

�
s1

¯�
0

�k−1

d�k �
jk=1

Nc

�
sk

. �6�

The fermion degrees of freedom can now be integrated out,
and the partition function can be rewritten as �10�*mikelsk@email.uc.edu
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Z =
Z0

eK �
kj�s


 K

2�Nc
�k

�
	

detG	
0 · det�G	

si��−1, �7�

where G	
si� is the Green’s function for a particular configu-

ration of auxiliary fields and is related to the noninteracting
Green’s function G	

0 by a Dyson’s equation,

�G	
si��−1e−�W	

si�
− e−�W	

si�
= �G	

0�−1 − I, �8�

with W	
si�=diag�	si� and �G	

0�pq=G	
0�jp ,�p ; jq ,�q� being k

�k matrices. Finally, QMC is used to perform the multidi-
mensional sum �Eq. �6�� over different expansion orders and
configurations of the auxiliary fields. For this, a Markov pro-
cess is set up, which samples the configurations of random
auxiliary fields si� with weight given by the product of de-
terminants in Eq. �7�.

In the Rubtsov method �8,11�, the interaction is first re-
written as

V� =
U

2 �
j=1

Nc

�
s̃ j=�1


nj↑ −
1

2
− 
s̃ j�
nj↓ −

1

2
+ 
s̃ j� , �9�

thereby introducing auxiliary fields s̃. This amounts to intro-
ducing a shift in the free energy,

K

�
= UNc

2 −

1

4
� . �10�

The auxiliary fields s̃ suppress the oscillating sign of the
integrand in the perturbative expansion �8� as follows:

Z = e−K�
��,�

e−S0�
kj�s


− U

2
�k

�
	

��nj1	��1� −
1

2
− 
	s̃1	¯ �njk	��k� −

1

2
− 
	s̃k	 .

�11�

The fermion degrees of freedom can be integrated out, and
the partition function becomes �11� as follows:

Z =
Z0

eK �
kj�s


− U

2
�k

�
	

det
G	
0 −

1

2
− 
W	

s̃i�� . �12�

Again, the product of determinants in Eq. �12� gives the
weight in QMC to evaluate the multidimensional sum over
the configurations of auxiliary fields s̃i�.

We now show that the two expansions, Eqs. �7� and �12�,
are equivalent �term by term� and that the auxiliary fields si�
and s̃i� are equivalent as well. Using Eq. �8�, the inverse
Green’s function G	

si�−1 can be rewritten as

G	
si�−1 = G	

0−1�G	
0 −

I

2
− 
�W	

si�	�I − e�W	
si�� , �13�

where 
�= �2 tanh�
2 �−1. Using this, and the fact that

�	�1−e�	si�=2−2 cosh �=−
�UNc

K , the integrand of Eq. �7�
can be rewritten as


 K

2�Nc
�k

�
	

detG	
0 · det�G	

si��−1

= 
−
U

2
�k

�
	

det
G	
0 −

1

2
− 
�W	

si�� �14�

from which we deduce that both algorithms are equivalent if

=
�, which is the same as requiring that Eq. �10� holds for
freely adjustable parameters K and 
 in these methods. Both
algorithms must have the same degree of sign problem and
statistics of measurements �such as autocorrelation time�, as
long as the above-mentioned condition for the parameters K
and 
 is satisfied.

III. RELATION BETWEEN HFQMC AND CTQMC

The derivation of the Hirsch-Fye algorithm involves
breaking up the partition function using a Trotter decompo-
sition and decoupling the quartic part of the Hamiltonian
with the transformation �2,12� as follows:

e−��U�n↑n↓−1/2�n↑+n↓�� =
1

2 �
s=�1

e�s�n↑−n↓�, �15�

where cosh �=e��U/2. The resulting partition function takes
the well-known form �1,2� as follows:

Z = �
sj�
�

��,�
e−�ij	�i	

� ��G	
0−1−I�e�W

	
sj�

+I��j	, �16�

=�
sj�

�
	=�1

det�G	
sj��−1, �17�

where G	
sj� is the Green’s function for a particular configu-

ration of auxiliary fields sj�,

�G	
sj��−1 = G	

0−1e�W	
sj�

− e�W	
sj�

+ I. �18�

The product of determinants �Eq. �17�� yields a sampling
weight for a corresponding configuration of the auxiliary
fields sj�. It is very similar to the sampling weight in
CTQMC �Eq. �7��, as are the transformations employed �Eqs.
�4� and �15�� and the update formulas �Eq. �8� and �18��. The
only difference is that in HFQMC, the number of the auxil-
iary fields is fixed to kHF=�Nc /��, and they are distributed
evenly in the imaginary time. In addition, the parameter �
plays the same role as the parameter � in CTQMC to couple
the auxiliary fields to the fermion spin. In fact, one can for-
mulate a set of restrictions, under which CTQMC reduces to
HFQMC:

�1� restrict the expansion order k in CTQMC equal to the
number of the auxiliary fields kHF in the HFQMC and dis-
tribute them evenly in the imaginary time interval �0. . .��;

�2� set the strength of the auxiliary field in CTQMC: �
=�. In terms of CTQMC parameters K or 
, this condition is
equivalent to

K =
�UNc

2 sinh2 �
2

=
�UNc

2�e��U/2 − 1�
, �19�
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 =
1

2 tanh�
2

=
1

2�tanh��U
4

. �20�

�3� Restrict the Monte Carlo moves to flipping the auxil-
iary fields associated with the interaction vertices; shifting
vertices in imaginary time is not allowed.

These restrictions imply that only a subset of diagrams
with fixed expansion order and equidistant auxiliary fields
are sampled in HFQMC, whereas in CTQMC, all diagrams
of variable order and all possible sets of auxiliary field con-
figurations contribute �see Fig. 1�.

The relation between CTQMC and HFQMC persists for
the attractive Hubbard model �U0�. Here, a different dis-
crete Hubbard Stratonovich transformation is used,

e���U��n↑n↓−1/2�n↑+n↓−1�� =
1

2 �
s=�1

e�s�n↑+n↓−1�, �21�

with cosh �=e���U�/2. The corresponding form for the inter-
action in CTQMC also has to be modified as

V� =
U

2 �
j=1

Nc

�
s̃ j=�1


nj↑ −
1

2
+ 
s̃ j�
nj↓ −

1

2
+ 
s̃ j� . �22�

Since the attractive Hubbard model has no sign problem, the
parameter 
 can be set equal to zero. However, for 
�0, the
relation to HFQMC is again given by the same set of restric-
tions as defined above �including Eqs. �19� and �20��. Simi-
larly, the relation between CTQMC and HFQMC is pre-
served in case of nonlocal density-density interactions.

IV. SMALL �� LIMIT

When ��→0, systematic errors in HFQMC are elimi-
nated and in this sense HFQMC and CTQMC are equivalent.
The relationship described above will also hold for

→� �see Eq. �20��. In the discussion above, HFQMC is
interpreted as sampling just one order in series expansion. To
understand this, we need to revisit the sampling and mea-

surement procedure in the CTQMC. The expectation value
of any operator can be written as a series expansion,

G =
1

Z
�

k

Gk =
1

Z
�

k

Gk

Zk
Zk =

1

Z
�

k

gkZk. �23�

In both variants of CTQMC the evaluation of this sum is
done with importance sampling, and the weight �or the
“guiding function”� is taken to be equal to the corresponding
contribution to the partition function Zk, with gk=

Gk

Zk
being

the Monte Carlo estimator for a fixed order of expansion. Of
course, Zk depends on the configuration of the auxiliary

fields sk�, so the actual estimator is gk
sk�=

Gk
sk�

Zk
sk� . However, for

this discussion, we are only interested in how this estimator
depends on the expansion order, so we assume that the aux-
iliary fields are already summed.

The series expansion for the partition function �Eq. �11��
defines a distribution �see Fig. 2� with mean value �11�,

�k�Z = − �
0

�

d��V���� . �24�

This can be generalized for higher factorial moments as fol-
lows:

��k�n�Z = �k�k − 1� ¯ �k − n + 1��Z

= �− 1�n�
0

�

d�1¯�
0

�

d�n�T�V��1� ¯ V��n�� .

�25�

For the Hubbard model with sufficiently large 
, these mo-
ments scale as

lim

→�

��k�n�Z = ��UNc

2�n = �n, �26�

which is a property of Poisson distribution P��k�= �ke−�

k! with
parameter �=�UNc


2. Of course, for large �, the Poisson
distribution approximates a normal distribution �see Fig. 2�.

FIG. 1. Example of the diagrams sampled in HFQMC �top� and
CTQMC �bottom�. The light and dark lines denote propagation of
spin-up and spin-down fermions, respectively. The block arrows
represent the auxiliary field, associated with an interaction vertex.
These vertices are distributed evenly in HFQMC, with interval ��,
while the distribution, the positions, and the number of vertices are
arbitrary in the CTQMC. Note that both connected and discon-
nected diagrams are sampled in both methods. In fact, product of
determinants �Eqs. �12� and �17�� accounts for all �k!�2 possible
diagrams for a particular set of vertices.
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FIG. 2. The distribution of the contributions Zk�Gk� to the par-
tition function �Green’s function� vs the expansion order k for the
two-dimensional �2D� Hubbard model with Nc=16 sites, U=W
�bandwidth�, filling f =0.75, �=4.5, and 
=1.01. Note that the dis-
tributions almost perfectly overlap, and their ratio �proportional to
gk� varies very little with k. Restricting diagrams to one order k
=kHF and restricting vertices to discrete imaginary time grid result
in the Hircsh-Fye algorithm with ��t=0.125.
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In a similar way as the series expansion for the partition
function defines its distribution, the expansion for the
Green’s function �or any measurable quantity� defines an-
other distribution,

G��i,� j� = �
k

Gk��i,� j� = �
k

�− 1�k

k!
�

0

�

d�1¯�
0

�

�d�k�T�c��i�c†�� j�V��1� ¯ V��k�� , �27�

which is characterized by its factorial moments as follows:

��k�n�Gij
=

�− 1�n

G��i,� j�
�

0

�

d�1¯�
0

�

�d�n�T�c��i�c†�� j�V��1� ¯ V��n�� . �28�

In general, this distribution is different from the one defined
by the expansion of the partition function. However, in the
limit when 
→�, the factorial moments of Green’s function
distribution scale as

lim

→�

��k�n�G = ��UNc

2�n = lim


→�
��k�n�Z. �29�

Since all the moments for both distributions are the same, the
distributions are the same as well in this limit and the esti-
mator gk becomes a constant, independent of the expansion
order k �see Fig. 2�. Thus, the sum over all expansion orders
k can be replaced by any single term corresponding to a fixed
value of k=kHF. That explains why sampling just one single
order in the expansion for the partition function �as is done in
HFQMC� gives the same exact result when ��→0.

V. COMPUTATIONAL IMPLICATIONS

When the product of determinants �Eqs. �7�, �12�, and
�17�� is not positive definite, its absolute value is taken as a
weight in QMC. This approach fails if the average sign of the
product of determinants becomes small. This is the infamous
fermion sign problem, the main limitation in any fermion
QMC method. From the discussion above, it follows that
both HFQMC and CTQMC have the same degree of sign
problem when 
→� and ��→0. For typical finite values of
�� and 
, the difference in average sign is still small �see
Fig. 3� and depends on model parameters. Altogether, we
find that neither of the methods has a definite advantage in

terms of the degree of the sign problem. Also, the auxiliary
fields enter the same way in both methods, and correlations
in these fields give information about the spin and charge
correlations in the repulsive and attractive Hubbard models,
respectively. Thus, optimization strategies developed for
HFQMC can be applied to CTQMC.

VI. CONCLUSIONS

We have investigated two weak-coupling CTQMC meth-
ods proposed by Rombouts et al. �7� and Rubtsov et al. �8�
and shown that they are equivalent for a certain choice of
freely adjustable parameters in these methods. We also estab-
lished the relation between the CTQMC methods and
HFQMC method and identified the latter as an approxima-
tion within CTQMC where the Monte Carlo sum is restricted
to a certain subset of diagrams. We have shown that this
approximation becomes exact in the limit when an infinite
number of time slices is taken in HFQMC, implying that
both methods have the same degree of the sign problem in
this limit.
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